
A step-by-step guide to
implementing Web SDK
By Meghan Powers
Senior Manager, Data Governance, Strategy & Analytics
https://www.linkedin.com/in/meghanpowers1/

May 2024

KPI
measurement

Edge network

Event Event forwardingPro�le & segmentaiton Tags

Pro�le & data management

Table of contents

1. Background

2. Before implementation

3. During implementation

4. After implementation

3

6

8

10

Search cars

Analytics

AEP

Pro�le

Datasets

�ird-party server

AEP stu�s

A Step-by-Step Guide to Implementing Web SDK 3

About me

Why you should implement the SDK in the first place?

Faster performance
Better page performance means
better Core Web Vitals scores
and higher SEO rankings.

Processing for tags will be done
on the Adobe side instead of the
CarMax side. This lessens the
weight of tagging on the page
and reduces code.

Server-side third-party tags are
on their way. With the Web
SDK, we’ll be able to implement
them more easily and harness
first-party data through Adobe
Launch—and produce higher
match rates for acquisition.

The Web SDK provides an out-of-
the-box solution for sending tags
server side, which will enable us
to run campaigns in a cookieless
world, as well as have better
matching rates in acquisition now.

Adobe-side processing Server-side 3P Cookieless world

Background1
My name is Meghan Powers, and I lead the Digital Data Strategy team, a team of half analysts and half developers, at
CarMax. CarMax is the nation’s largest used car retailer and has been named Fortune Magazine’s “100 Best Companies to
Work For” 20 years in a row. I’m proud to have been a part of CarMax’s success since joining the company eight years ago.

I am honored to be serving my second year as an Adobe Analytics Champion. I’m also an Adobe Analytics Certified Expert
Business Practitioner and have been working in this field for 15 years. In my free time I love playing softball, doing all the
water sports, snowboarding, and traveling (up to 17 countries and 30 states). But mostly I enjoy spending time with my friends
and family in Richmond, Virginia, and running after my 8-year-old daughter and 5-year-old son (and husband).

After leading my team through the migration to the Adobe Web SDK, I thought I’d take some time and share our experience
working with the SDK, steps we took during each phase of the migration, and some key learnings and gotchas. While this will
look different for each company, hopefully this can serve as a helpful blueprint and guide for teams just starting down this road.

A Step-by-Step Guide to Implementing Web SDK 4

SDK’s have produced large Core Web Vital improvements

Metric Improved by…

Avg Core Web Vitals Score - Performance Over 25%

SEO Score Over 5%

First Contentful Paint (s) Over 20%

Speed Index (s) Over 25%

Largest Contentful Paint (s) Over 25%

Time to Interactive (s) Over 20%

Total Blocking Time (ms) Over 45%

Cumulative Layout Shift Over 85%

3rd party code blocked the main thread for ___ ms* Over 50%

Avg Adobe Tag Manager Weight (ms) Over 50%

Why you should implement the SDK in the first place

Here is what I mean by faster performance. We’ve seen huge leaps in all Core
Web Vital metrics on the microsites where we’ve implemented the SDK, as well as
better data quality (see graphic below).

We’ve also seen a huge increase in the amount of data we’re able to send to some
of our third-party acquisition campaigns via third-party server-side tags, which SDK
enabled us to add.

A Step-by-Step Guide to Implementing Web SDK 5

Background

Team members include myself as team lead, four developers, two analysts,
and one QA. Carmax.com is made up of smaller microsites, each with its
own codebase, each owned by a separate product team. We decided to
implement the SDK one microsite at a time (since our team was also still
responsible for doing all the “run the business” tagging work).

Performance

SEO

100

WebSDK

98

Search cars

Certi�ed
quality
cars

How we determined the order of microsite launches

1. What would make the biggest impact on SEO (Core Web Vitals)?

a. Pulled CWV baselines for all microsites*

b. Pulled data in workspace on which ones were biggest landing pages for
external traffic

2. What would make the biggest impact on acquistion? (Because of server-side
tags/programs like FB CAPI)

3. Considered size and complexity of each microsite

4. Took all those factors together and put them in rough order

5. Talked to first few teams and got buy-in

a. Let them know LoE for them (small) and migration

b. Showed them the benefits

c. Included actual data from other microsites we’d already converted

4. Pivoted a couple times from that order as needed

*How to pull Core Web Vitals:

1. Open dev tools

2. Install Lighthouse extension

3. Run mobile and desktop lighthouse reports

4. Take a snapshot each morning and each evening for both mobile and desktop
for seven days (make sure you get each day of the week)

5. Use analysis workspace to determine the percentage of traffic from mobile
versus. desktop for that page

6. Take the weighted average of mobile and desktop for all seven days

7. This is your baseline number for each metric

A Step-by-Step Guide to Implementing Web SDK 6

1. I assigned my team members different personas relevant to that
microsite and had them shop the site as that persona so they would
understand how our customers use those pages and identify with
their pain points.

a. Example: “You are an expectant mother shopping for a
bigger family vehicle”

2. We then had a meeting with our whole team and the product team
who owns the microsite.

a. My team brought their questions and perspectives from the
persona exercise.

b. The project manager talked to us about how customers use the
pages and why it is important to carmax.com and to the company.

c. The analyst talked to us about what data they typically use to
make decisions and various ways they use the data.

d. The developers talked to us about any gotchas with the various
features and any unique aspects of their codebase.

Next came the requirements gathering phase. This is my team’s typical
approach to documenting requirements, along with a sample from our
Excel file. We find it’s really helpful to include screenshots.

1. Partner with product team.

a. Get all pages, features, and experiences in scope (in codebase).

b. Get QA credentials, logins, account statuses, etc. to get into
all experiences.

c. Ask their analyst how their current analytics are working, what
KPIs are most important, any business questions they want to be
able to answer that they can’t now, etc.

2. Develop requirements (sample below).

3. Perform pre end-to-end testing** against those requirements.

4. Partner with product team to go through requirements to make sure
it’s comprehensive and tags will answer their business questions.

5. Walk our developers through the requirements and answer
their questions.

6. Create (Leankit) cards.

a. One card for for first-party page load

b. One card for third-party page load

c. One card for each CTA/click action

d. Developers create a tech spec for data layer using the same Excel
requirements doc

Before starting an SDK migration, it’s important not just to understand the technical underpinnings of it, but also to connect with it—everyone
does a better job when they know the “why” behind the “what.” Here are some steps I took with my team to accomplish that.

Before
implementation2

A Step-by-Step Guide to Implementing Web SDK 7

**Why do we do end-to-end testing before implementation?

1. This was an important addition to our process that we started doing after the
first one.

2. It helps determine what tagging is currently working as expected versus
“broken”/unideal..

a. Tagging that is working can be “lifted and shifted”—less work on developers.

b. We evaluate each broken tag and assign one of these statuses:

i. Level 1: Must be fixed before SDK can go live

ii. Level 2: Not a blocker for the SDK to go live but should be fixed in a fast
follow (and then prioritize cards within level 2)

iii. Level 3: Not a blocker for the SDK and not critical to fix right away—can
be put in a backlog of ”nice to have” tagging cleanup work (and then
prioritize cards within level 3)

2000

4000

6000

8000

00:07:44

Time Spent per visit
Key Performance Indicator

Purchase �ow

Product page

Purchase �ow

23.5%
3.6%

Requirements sample

A Step-by-Step Guide to Implementing Web SDK 8

1. Create separate Adobe Launch property—just for SDK.

2. Create a new TESTING REPORT SUITE and assign it to that new SDK
Launch property.

3. Since it might take weeks or months, lift and shift rules from old
Launch property to SDK property and then swap over all at once.

4. We divvied microsites up into pages, and then into sections within
each page, and then individual CTAs within each section. We created
one ‘card’/task per CTA.

5. Refine work/card as close to development as possible so details
are fresh.

6. QA each card (individual CTA).

7. Use new testing report suite to compare QA data in SDK to QA data
in AppMeasurement.

a. Counts of events, props, eVars

b. Check main KPIs

3. Once QA passes,, sits in “Ready” status until we are ready to launch
whole SDK at one time.

4. Once cards are all done, partner with product team to pick a launch
date that works for both teams (no big tests about to go live, etc.).

Along the way, I found it really important to keep stakeholders in the loop. In
order to do that:

1. Establish a stakeholder group.

a. Make sure to include acquisition teams that are driving traffic to that page.

b. There will probably be some common stakeholders to keep informed
across any microsites, but then some others may change depending on
the microsite.

3. Email status updates throughout project.

4. One to two weeks ahead of launch date, email stakeholders to let them
know about the date and make sure there are no conflicts.

a. Make sure the acquisition team is prepared to monitor third-party data.

During
implementation 3

Now you’re ready to start building. These are the implementation steps we took. Unfortunately I am not a developer (trust me, no one wants me
touching code), so this is more the high-level approach we took rather than the actual code you’ll need.

A Step-by-Step Guide to Implementing Web SDK 9

Finally, it’s time to launch to production. We found success by following these
general steps:

1. Coordinate time and day with product team—they do their part then we do
ours, same hour.

2. Establish KPIs ahead of time with ourteam and product team (PT) analyst.

a. Ahead of time, create a workspace with hour-by-hour measurement
of KPIs.

3. Perform live QA with our devs and PT analyst of hourly workspace approximately
three hours later.

a. Determine if anything dropped off in the hour of launch (see graph below).

b. If not, we’re good to go—and keep monitoring.

c. If so, try and troubleshoot on the spot with devs.

d. If a quick fix, put in; If a quick fix, determine on the spot with PT analyst
whether we can live with that bug or if need to revert while fixing..

e. If reverting,, just swap back to old Adobe Launch property.

Hour-by-hour KPI measurement in Adobe Analysis Workspace

Post-launch to production

1. If everything was successful, send a follow-up email to the stakeholder group to
let them know that the launch was successful.

2. Continue to monitor KPIs for another week and do spot checks of tags in
production and other production data in Analysis Workspace.

3. Repeat steps to pull core web vitals numbers for seven days to get post-
production data.

4. After a week, follow up with stakeholder group to let them know that all KPIs are
still stable and to report out results of Core Web Vitals percentage change of pre-
post results.

5. Celebrate as a team!

Learnings

No project would be complete if we didn’t learn from mistakes and unforeseen
circumstances. Here are some of the”gotchas” we discovered along our journey:

1. We noticed a bit of data clunkiness with half the site in SDK and the other half not.

a. When we turned on a new microsite, we saw an increase in internal URL
marketing channel visits for those pages.

2. Pay attention to Adobe Target.

a. Make sure the Adobe Target extension is enabled and all check boxes are
checked in applicable rules.

b. Partner closely with the product team to make sure you know what tests
are running and have them test any active tests in the SDK environment.

c. If you can avoid launching to production during an active test, even better.

3. Don’t forget about third-party tags, and make sure to migrate them too.

a. Also make sure to QA them. We took the extra step of having each partner
test their own tags and getting their sign-off that they looked good.

4. Do pre- and post-end-to-end testing.

a. Don’t just rely on QA for each individual card/task/CTA.

5. We initially built SDKs using processing rules but found that to be unstable, so
we moved away from that approach and built everything in Adobe Launch.

6. We’ve seen some instability building the SDK on our old data layer, so we are
now following Adobe’s best practices and moving to an event-driven data
layer—which is already working better on our newest SDK implementation.

After
implementation4

I hope this guide was helpful, and I’d be interested in hearing best practices, tips and tricks, or other learnings or”gotchas” from anyone else who’s implemented
the SDK. You can find me on the Adobe Experience League or on LinkedIn.

Adobe, the Adobe logo, and Experience League are either registered trademarks or trademarks
of Adobe in the United States and/or other countries.
© 2024 Adobe. All rights reserved.

Hopefully all has gone well, and you have the Adobe Web SDK up and running in prod with no major issues. Take a minute and celebrate as a
team because I know it wasn’t easy to get to this point.

https://www.linkedin.com/in/meghanpowers1/
https://experienceleaguecommunities.adobe.com/t5/user/viewprofilepage/user-id/17572035

